Seb Academy
Chemistry Homework
Topics: Energy of Reactions
Time allowed: 40 min

Date: _____

•

Name: _____

Energy of Reactions Homework 1

• • State whether the following observations are exothermic or endothermic reaction?

	Chemical reactions	Exothermic or endothermic reaction
•	Br ₂ 2Br	
•	CCl ₄ (g) C (g) + 4Cl (g)	
•	2H + 2O H ₂ O	
•	2Ca + O ₂ 2CaO	
•	NaOH + HCI NaCl + H ₂ O	
•	$CuCO_3$ (s) CuO (s) + CO_2 (g)	

Explain why $CCI_4(g) C(g) + 4H(g)$ is endothermic in part (b).

[2]

• (2010/O/GCSE/10) Car manufacturers are developing fuel cells for use in cars

Fuel cells produce electrical energy from the reaction between a fuel and oxygen. Two possible turns for use in fuel cells are hydrogen and methanol. The table gives some date about these two fuels.

Fuel	Melting point ° C	Boiling point ° C	Energy charge of combustion kJ/mol
Hydrogen	-259	-252	256
Methanol	-97.7	54.5	715

• The table gives values for the change of combustion for each fuel in kJ/mol

Calculate the energy output for 1g of each fuel

(2013/RP/S3IP/5) ΔH Calculation: Methane

 (2013/RP/S3IP/5) The table below shows some bond energies, measured in kilojoules per mole.

bond	Bond energy in kJ mol ⁻¹
C-C	347
C-H	414
C-0	351
C=O	745
O-H	460
0-0	142

Complete the statements below to calculate the energy change expected from the reaction of methane and oxygen

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $\Delta H = ? kJ$

(a) Energy change in breaking the bonds in one mole of CH₄ =kJ

[1]

(b) Energy change in breaking the bonds in two moles of $O_2 = \dots kJ$

[1]

- (c) Energy change in making the bonds in one mole of CO₂ =kJ
- (d) Energy change in making the bonds in two moles of $H_2O = \dots kJ$

[1]

[1]

5

[Total: marks]

(2007/RP/S4/IP) AH Calculation: Ethane

• (2007/RP/S4/IP) The combustion of ethane can be represented by the following equation:

 $2C_2H_6 \ \ \text{+} \ \ 7O_2 \ \ \rightarrow \ \ 4CO_2 \ \ \text{+} \ \ 6H_2O \qquad \Delta H=?$

The bond energy data of some chemicals are given in the table below.

Bond	C - H	O = O	C = O	C - O	O - H	C - C
Bond energy (kJ/mol)	432	497	803	323	464	347

(a) Calculate the enthalpy change, ΔH , for the combustion of ethane.

(b) Using your answer in (a), calculate the energy liberated when 60.0 g of ethane is combusted.

[1]

[3]

(c) Draw an energy profile diagram to represent the combustion process. On your diagram, label activation energy and enthalpy change clearly.

[2]

[2]

(d) Explain why the reaction is exothermic in terms of bond breaking and bond forming.

Bonding breaking is an _____ process.

Bonding forming is an _____ process.

4

There is _____ energy _____ in bond forming than energy _____ in bond breaking. As such, the overall reaction is exothermic

[Total: marks]

8

(2012/RP/S3IP/6) hydrogen peroxide and enthalpy change and moles

• (2012/RP/S3IP/6) Aqueous hydrogen peroxide decomposes rapidly to give oxygen and water when manganese(IV) oxide is added. The reaction can be represented by the following equation:

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g); \Delta H = -196 \text{ kJ}$$

(a) Explain what is meant by $\Delta H = -196$ kJ.

[2]

(b) In terms of bond breaking and bond making, explain how this energy change occurs.

[1]

(c) Calculate the change in enthalpy, ΔH , when 1.00 g of hydrogen peroxide decomposes.

[2]

(d) Predict the oxidation state of manganese in manganese(IV) oxide after the reaction completes.

[1]

[Total: 6 marks]

(2015/S4/RP/MYCT/5) ΔH Calculation Hydrogen Fuel Cell

	5/04/		an Galculation right ogen r					
•	(20 ²	2015/S4/RP/MYCT/5) Fuel cells may be used to power cars. One type of fuel cell roduces electricity from the reaction of hydrogen with oxygen to produce water.						
	(a)	Suggest a reas	son why using this type of	fuel cell is less polluting the	an using petrol.			
					[1]			
	(b)	Write the balan	ced equation for this reaction	n.				
					[1]			
	(c)	Using the bond reaction.	energies given below, calcu	ulate the overall enthalpy ch	ange for this			
			Chemical bond	Bond energy / kJ mol ⁻¹				
			O – O	146				
			O = O	496				
			0 – H	463				
			H – H	436				

	[3]
(d)	Represent the above reaction on a labeled energy profile diagram. Indicate on your diagram the activation energy (E_a) and overall enthalpy change (ΔH) of the reaction.
	[4]

Ans	Answers					
1	1 State whether the following observations are exothermic or endothermic reaction?					
		Chemical reactions	Exo or endo			
(a)	(i)	Br ₂ 2Br	Endothermic	Energy is absorbed to break the bond between Br-Br molecule.		
	(ii)	CCl ₄ (g) C (g) + 4Cl (g)	Endothermic	Energy is absorbed to break the bonds between 4 C-Cl molecule in CH ₄ .		
	(iii)	2H + 2O H ₂ O	Exothermic	Energy is released to form the bonds between 2 O-H molecule in H_2O .		
	(iv)	2Ca + O ₂ 2CaO	Exothermic	Combustion (reaction with oxygen) is always exothermic.		
	(v)	NaOH + HCI NaCI + H ₂ O	Exothermic	Neutrlalization is always exothermic.		
	(vi)	$CuCO_3$ (s) CuO (s) + CO_2 (g)	Endothermic	Decomposition is always endothermic. Heat energy is absorbed to break bonds.		

2		

(i)

Energy output for 1g of hydrogen = 256 / 2 = 128 kJ Energy 2 output for 1g of methanol = 715 / 32 = 22.34 kJ

Ans	wers		
3	(a)	+1656 kJ	1
	(b)	+1656 kJ	1
	(C)	-1490 kJ	1
	(d)	-1840 kJ	1
	(e)	-676 kJ	1
		[-1] no sign / wrong sign (parts i to iv)	
		[-1] no sign (part v)	

Ans	wers	i de la construcción de la constru	
4	(a)	$2C_2H_6$ + $7O_2 \rightarrow 4CO_2$ + $6H_2O$	
		Energy absorbed to break 6 C-H and 1 C-C and 7 O=O = (2X6X432) + 347 + (7X497) = 9010 KJ	1
		Energy given out to form 8 C=O and 12 O-H = (8X803) + (12X464)	1
		= 11 992 KJ	1
		$\Delta H = (+9010) + (-11,992)$	
		= - 2982 KJ/mol	
	(b)	M_r of ethane = 30	1
		60 g of ethane is two moles	
		Therefore, 2982 KJ of energy is liberated with 60 g of ethane.	

(c)	2

Answers						
5	(a)	The reaction is exothermic / 196 kJ of heat energy is released [1] when two moles	2			
		of hydrogen peroxide reacts [1] (to give two moles of water and a mole of oxygen).				
	(b)	The difference between the energy absorbed to break the bonds of hydrogen	1			
		peroxide and the energy released by formation of bonds in water and oxygen is				
		the energy change.				
	(C)	Amount of $H_2O_2 = 1.00 / 34$	2			
		= 0.02941 mol				
		$\Delta H = 0.02941 \times (196 / 2)$				
		= 2.88 kJ (reject if without negative sign)				
	(d)	+4	1			

Answers						
6	(a)	Does not produce soot or other carbon products or SO ₂ or oxides of nitrogen/ produces water as the only product	1			
	(b)	$2H_2(g) + O_2(g) 2H_2O(I)$	1			
	(c)	Overall enthalpy change = (436 x 2 + 496) - (463 x 2 x 2) = -484 kJ or kJ/mol	3			
	(d)	Prove 2015 RP 34 MICT and (1) [Comparison [1] [C	4			